The Elusive Link Between LQT3 and Brugada Syndrome
نویسنده
چکیده
Background—Defects of the SCN5A gene encoding the cardiac sodium channel are associated with both the LQT3 subtype of long-QT syndrome and Brugada syndrome (BS). The typical manifestations of long-QT syndrome (QT interval prolongation) and BS (ST segment elevation in leads V1 through V3) may coexist in the same patients, which raises questions about the actual differences between LQT3 and BS. Intravenous flecainide is the standard provocative test used to unmask BS in individuals with concealed forms of the disease, and oral flecainide has been proposed as a treatment option for LQT3 patients because it may shorten their QT interval. Methods and Results—We tested the possibility that in some LQT3 patients, flecainide might not only shorten the QT interval, but also produce an elevation of the ST segment. A total of 13 patients from 7 LQT3 families received intravenous flecainide using the protocol used for BS. As expected, QT, QTc, JT, and JTc interval shortening was observed in 12 of the 13 patients, and concomitant ST segment elevation in leads V1 through V3 ($2 mm) was observed in 6 of the 13. Conclusions—The data demonstrate that flecainide may induce ST segment elevation in LQT3 patients, raising concerns about the safety of flecainide therapy and demonstrating the existence of an intriguing overlap between LQT3 and BS. (Circulation. 2000;102:945-947.)
منابع مشابه
The elusive link between LQT3 and Brugada syndrome: the role of flecainide challenge.
BACKGROUND Defects of the SCN5A gene encoding the cardiac sodium channel are associated with both the LQT3 subtype of long-QT syndrome and Brugada syndrome (BS). The typical manifestations of long-QT syndrome (QT interval prolongation) and BS (ST segment elevation in leads V1 through V3) may coexist in the same patients, which raises questions about the actual differences between LQT3 and BS. I...
متن کاملGating-dependent mechanisms for flecainide action in SCN5A-linked arrhythmia syndromes.
BACKGROUND Mutations in the cardiac sodium (Na) channel gene (SCN5A) give rise to the congenital long-QT syndrome (LQT3) and the Brugada syndrome. Na channel blockade by antiarrhythmic drugs improves the QT interval prolongation in LQT3 but worsens the Brugada syndrome ST-segment elevation. Although Na channel blockade has been proposed as a treatment for LQT3, flecainide also evokes "Brugada-l...
متن کاملGenetic analysis of Brugada syndrome and congenital long-QT syndrome type 3 in the Chinese
BACKGROUND Brugada syndrome and congenital long-QT syndrome (LQTS) type 3 (LQT3) are 2 inherited conditions of abnormal cardiac excitability characterized clinically by an increased risk of ventricular tachyarrhythmias. SCN5A gene that encodes the cardiac sodium channel α subunit is responsible for the 2 diseases, and more work is needed to improve correlations between SCN5A genotypes and assoc...
متن کاملTwo distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel.
The congenital long-QT syndrome (LQT3) and the Brugada syndrome are distinct, life-threatening rhythm disorders linked to autosomal dominant mutations in SCN5A, the gene encoding the human cardiac Na(+) channel. It is believed that these two syndromes result from opposite molecular effects: LQT3 mutations induce a gain of function, whereas Brugada syndrome mutations reduce Na(+) channel functio...
متن کاملFlecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A.
BACKGROUND Mutations in SCN5A can result in both long QT type 3 (LQT3) and Brugada syndrome (BrS), and a few mutations have been found to have an overlapping phenotype. Long QT syndrome is characterized by prolonged QT interval, and a prerequisite for a BrS diagnosis is ST elevation in the right precordial leads of the electrocardiogram. METHODS AND RESULTS In a Danish family suffering from l...
متن کامل